Maintenance of skeletal muscle mitochondria in health, exercise, and aging

DA Hood, JM Memme, AN Oliveira… - Annual Review of …, 2019 - annualreviews.org
DA Hood, JM Memme, AN Oliveira, M Triolo
Annual Review of Physiology, 2019annualreviews.org
Mitochondria are critical organelles responsible for regulating the metabolic status of
skeletal muscle. These organelles exhibit remarkable plasticity by adapting their volume,
structure, and function in response to chronic exercise, disuse, aging, and disease. A single
bout of exercise initiates signaling to provoke increases in mitochondrial biogenesis,
balanced by the onset of organelle turnover carried out by the mitophagy pathway. This
accelerated turnover ensures the presence of a high functioning network of mitochondria …
Mitochondria are critical organelles responsible for regulating the metabolic status of skeletal muscle. These organelles exhibit remarkable plasticity by adapting their volume, structure, and function in response to chronic exercise, disuse, aging, and disease. A single bout of exercise initiates signaling to provoke increases in mitochondrial biogenesis, balanced by the onset of organelle turnover carried out by the mitophagy pathway. This accelerated turnover ensures the presence of a high functioning network of mitochondria designed for optimal ATP supply, with the consequence of favoring lipid metabolism, maintaining muscle mass, and reducing apoptotic susceptibility over the longer term. Conversely, aging and disuse are associated with reductions in muscle mass that are in part attributable to dysregulation of the mitochondrial network and impaired mitochondrial function. Therefore, exercise represents a viable, nonpharmaceutical therapy with the potential to reverse and enhance the impaired mitochondrial function observed with aging and chronic muscle disuse.
Annual Reviews