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Figure S1. TEM of A) Au seeds, B) the 78 nm Au cores, C) Au@Ag core–shell structures, D) 

Au@Au core-cage structures. The scale bar is 100 nm in each panel. 

 

 

Figure S2. Characterization of PTNP structures. A) EDS spectra of PTNP (To measure the 

EDS spectra, the samples were prepared on TEM grids which are made of copper), and B) 

Hydrodynamic diameter distribution of PTNP structures.  

 

 

 



Figure S3. PTNP suspended in HaCaT cell media, saliva, and PBS (Rows indicate control (media 
without PTNP) and PTNP within the solutions with three replicants (1,2, and 3)) for A) 1 day, B) 3 
days, C) 8 days, and D) 15 days.  
 

 
Figure S4. UV-vis spectra of AuNPs (78 nm) and Au@Au core@cage nanoparticles (PTNP, 85 
nm).  
 
 

 
Figure S5. The uptake of DEX, PEG and PDA coated PTNP (in different concentration of 0, 0.1, 
0.25 mg/ml) into S. mutans biofilms formed on sHA. *P< 0.05, **P<0.005. 



 

Figure S6. PTNP uptake by s. mutans bacteria. A) SEM in backscattered electron (BSE) mode 

showing the morphology of PTNP-treated biofilm. B) BSE/EDS map showing gold (yellow) 

distribution on biofilms. C) Energy dispersive X-ray spectroscopy (EDS) elemental analysis of 

PTNP structures.  

 

 

Figure S7. Photostability of PTNP. A) Temperature change of PTNP during five laser irradiation 

cycles (each irradiation time is 5 min). TEM of irradiated PTNP sample B) before, and C) after 

five cycle laser irradiations. 

 

 



 
Figure S8. In vitro PA imaging of PTNP, A and B) PA contrast enhancement at different 

concentrations. 

 

 

 
Figure S9. In vitro PA imaging of PTNP, A and B) Signal enhancement of PTNP incubated with 

S. aureus biofilm at different concentrations. 

 

 

 

 

 
Figure S10. Dry weight of biofilms after the treatments. In the graphs C, N, CL, NL denote 

control, PTNP, control + laser, and PTNP + laser respectively. *P < 0.05, **P < 0.0001. 



 

 

 

Figure S11. Live-Dead staining image of HaCaT cells at 0.5W laser irradiation after 2h, 24h, 

48h, and 72h. 

 

 

 

Figure S12 The uptake of DEX coated PTNP (at concentrations of either 0.1 or 0.25 mg/ml) into 

S. mutans biofilms and epithelial cells. *P< 0.05, **P<0.005. 

 



 

Figure S13. Infected wounds were administered PTNP (20 µl of 2.5 mg ml−1, topical treatment); 

and ABX. 10 minutes later, infected wounds of mice also received laser irradiation (0.7 W cm -2, 

5 min). n = 4 mice per group, for a total of five groups. A) A photograph of the procedure. B) 

Thermographic image of an infected wound and its surroundings during the treatment. C) Image 

analysis of thermal imaging data during the treatment, ΔT shows the difference between wound 

temperature and animal body temperatures.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure S14. In vivo PA imaging of infected wounds. A) Control and B) PTNP treated. Left: 

greyscale ultrasound images, and right: PA images. C) SBR of the infected wounds with and 

without incubation with PTNP. ** indicate statistically significant differences at P<0001. 

 

 

 

Evaluation of Photothermal Conversion Efficacy 

 

The photothermal conversion efficacy of PTNP was calculated using the following equation: 

 

η = (hSΔTmax-Qs)/ I(1-10-A808)       (1) 

 

Ƭs = mD CD/hS         (2) 

 



Where h is the heat transfer coefficient, S is the surface area of the container, Tmax is the 

maximum steady temperature of the solution of the PTNP (i.e., 71.2 oC), and environmental 

temperature (TSurr) was 18 oC. I is the laser power (2 W), A808 is the absorbance of the PTNP 

at 808 nm (A= 0.17), and Qs express heat associated with the light absorption by the solvent. The 

variable Ƭs is the sample-system time constant, and mD and CD are the mass (1 g) and heat 

capacity (4.2 J·g−1·°C−1) of the deionized water used as the solvent. From equations (1) and (2), 

the η value of the PTNP was calculated to be 77%, which is comparable with gold nanostar 

(78%)1, gold nanoporous nanoshell (75.5%)2 and higher than gold nanocages (53.6%)3, gold 

nanorings (42%)4, gold nanoshells (41.4%)5, gold nanorod (21.3%)6 graphene oxide (25%)7, Cys-

CuS NPs (38%)5 Au@ Cu2–x S Core@ Shell (52%)8. 
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